资源类型

期刊论文 567

会议视频 17

会议专题 1

年份

2023 44

2022 47

2021 54

2020 43

2019 49

2018 41

2017 38

2016 23

2015 27

2014 23

2013 27

2012 13

2011 20

2010 26

2009 22

2008 15

2007 16

2006 7

2005 7

2004 8

展开 ︾

关键词

增材制造 6

建模 5

仿真技术 4

冶金 3

智能制造 3

颠覆性技术 3

SWAT模型 2

人工智能 2

代理模型 2

仿真 2

凝固过程 2

可视化 2

复合材料 2

复杂系统 2

建模仿真 2

数值模拟 2

新材料 2

机器学习 2

材料 2

展开 ︾

检索范围:

排序: 展示方式:

A multiscale material model for heterogeneous liquid droplets in solid soft composites

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1292-1299 doi: 10.1007/s11709-021-0771-3

摘要: Liquid droplets in solid soft composites have been attracting increasing attention in biological applications. In contrary with conventional composites, which are made of solid elastic inclusions, available material models for composites including liquid droplets are for highly idealized configurations and do not include all material real parameters. They are also all deterministic and do not address the uncertainties arising from droplet radius, volume fraction, dispersion and agglomeration. This research revisits the available models for liquid droplets in solid soft composites and presents a multiscale computational material model to determine their elastic moduli, considering nearly all relevant uncertainties and heterogeneities at different length scales. The effects of surface tension at droplets interface, their volume fraction, size, size polydispersity and agglomeration on elastic modulus, are considered. Different micromechanical material models are incorporated into the presented computational framework. The results clearly indicate both softening and stiffening effects of liquid droplets and show that the model can precisely predict the effective properties of liquid droplets in solid soft composites.

关键词: liquid in solid     soft composite     computational modeling     multiscale model     heterogeneity    

基于高等分析的钢结构设计——材料建模与应变极限 Research Article

Leroy Gardner, Xiang Yun, Andreas Fieber, Lorenzo Macorini

《工程(英文)》 2019年 第5卷 第2期   页码 243-249 doi: 10.1016/j.eng.2018.11.026

摘要:

我们对于钢框架的结构分析通常通过梁单元来进行。然而,由于该类单元无法确切地捕捉钢材截面的局部屈曲行为,因此,传统的钢结构设计规范采用截面分类的概念来确定截面强度以及变形能力受材料局部屈曲影响的程度。而塑性设计方法的使用仅限于 1 级截面,其具有足够的转动能力以形成塑性铰并引发倒塌机制。在更高级截面中,局部屈曲阻止了具有这种转动能力的塑性铰的形成,除非出于计算需求而使用壳单元,否则我们需要对材料进行弹性分析。然而,本文证明了通过将连续强度法(CSM)及其应变极限纳入分析,可以在梁单元中有效地模拟局部屈曲。此外,通过进行几何非线性和材料非线性的高等分析,可确保无需进行额外的设计检查。如果采用适当而精确的应力 - 应变关系,我们在较粗截面中观察到的应变硬化所带来的积极影响亦可以得到有效应用;为此,我们在文详尽地描述了一个用于热轧钢的四元线性材料模型。对于一致的高等分析框架中任意细长比截面的分析问题, CSM 应变极限分析法均适用,同时还可以从荷载重新分配水平的优化中受益。本文所提出的方法可用于单个构件、连续梁单元及相关框架结构,并且在精度与一致性等方面与当前钢结构设计规范相比,本方法具有显著优势。

关键词: 高等分析     连续强度法     局部屈曲     材料建模     应变极限    

Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

Zheng-Dong MA

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 442-459 doi: 10.1007/s11465-018-0488-8

摘要:

Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson’s ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

关键词: architectured material     cellular materials     multi-scale modeling     homogenization method     effective material properties     computational method    

多尺度材料与过程设计的数据驱动和机理混合建模方法 Perspective

周腾, Rafiqul Gani, Kai Sundmacher

《工程(英文)》 2021年 第7卷 第9期   页码 1231-1238 doi: 10.1016/j.eng.2020.12.022

摘要:

世界人口的不断增长要求加工业以更高效和更可持续的方式生产食品、燃料、化学品和消费品。功能性过程材料是这一挑战的核心。传统上,人们根据经验或者通过反复试验的方法来发现新型先进材料。随着理论方法和相关工具的不断改进和计算机能力的提高,现在流行使用计算方法来指导材料选择和设计,这种方法也非常有效。由于材料选择与材料使用的过程操作之间存在很强的相互作用,必须同时进行材料设计和过程设计。尽管有这种重要联系,但由于通常需要使用不同规模的多个模型,材料和过程的集成设计并不容易。混合建模为解决此类复杂的设计问题提供了一个有前景的选择。在混合建模中,用数据驱动模型描述原本计算成本高昂的材料特性,而用机理模型表示众所周知的过程相关原理。本文重点介绍了混合建模在多尺度材料和过程设计中的重要性。首先介绍通用设计方法,然后选择了六个重要的应用领域:四个来自化学工程领域,两个来自能源系统工程领域。对于选定的每个领域,讨论了使用混合建模进行多尺度材料和过程设计的最新研究。最后,本文给出了结论,指出当前研究的局限性和未来的发展空间。

关键词: 数据驱动     代理模型     机器学习     混合建模     材料设计     过程优化    

Smart systems engineering contributing to an intelligent carbon-neutral future: opportunities, challenges, and prospects

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1023-1029 doi: 10.1007/s11705-022-2142-6

摘要: This communication paper provides an overview of multi-scale smart systems engineering (SSE) approaches and their applications in crucial domains including materials discovery, intelligent manufacturing, and environmental management. A major focus of this interdisciplinary field is on the design, operation and management of multi-scale systems with enhanced economic and environmental performance. The emergence of big data analytics, internet of things, machine learning, and general artificial intelligence could revolutionize next-generation research, industry and society. A detailed discussion is provided herein on opportunities, challenges, and future directions of SSE in response to the pressing carbon-neutrality targets.

关键词: machine learning     modeling     material     industrial applications     environment    

Modeling process-structure-property relationships for additive manufacturing

Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 482-492 doi: 10.1007/s11465-018-0505-y

摘要:

This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the process-structure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a high-efficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

关键词: additive manufacturing     thermal fluid flow     data mining     material modeling    

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第3期   页码 317-332 doi: 10.1007/s11708-013-0271-9

摘要: As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal material, especially room-temperature liquid metal, is recently found to be uniquely useful in a wide variety of emerging areas from energy, electronics to medical sciences. However, with the coming enormous utilization of such materials, serious issues also arise which urgently need to be addressed. A biggest concern to impede the large scale application of room-temperature liquid metal technologies is that there is currently a strong shortage of the materials and species available to meet the tough requirements such as cost, melting point, electrical and thermal conductivity, etc. Inspired by the Material Genome Initiative as issued in 2011 by the United States of America, a more specific and focused project initiative was proposed in this paper—the liquid metal material genome aimed to discover advanced new functional alloys with low melting point so as to fulfill various increasing needs. The basic schemes and road map for this new research program, which is expected to have a worldwide significance, were outlined. The theoretical strategies and experimental methods in the research and development of liquid metal material genome were introduced. Particularly, the calculation of phase diagram (CALPHAD) approach as a highly effective way for material design was discussed. Further, the first-principles (FP) calculation was suggested to combine with the statistical thermodynamics to calculate the thermodynamic functions so as to enrich the CALPHAD database of liquid metals. When the experimental data are too scarce to perform a regular treatment, the combination of FP calculation, cluster variation method (CVM) or molecular dynamics (MD), and CALPHAD, referred to as the mixed FP-CVM-CALPHAD method can be a promising way to solve the problem. Except for the theoretical strategies, several parallel processing experimental methods were also analyzed, which can help improve the efficiency of finding new liquid metal materials and reducing the cost. The liquid metal material genome proposal as initiated in this paper will accelerate the process of finding and utilization of new functional materials.

关键词: liquid metal material genome     energy material     material discovery     advanced material     room-temperature liquid alloy     thermodynamics     phase diagram    

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 141-152 doi: 10.1007/s11465-019-0531-4

摘要: Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.

关键词: robust topology optimization     lattice structures     multi-material     material uncertainty     load uncertainty     univariate dimension reduction    

工程材料研究中科学问题的思考

于翘

《中国工程科学》 1999年 第1卷 第3期   页码 1-4

摘要:

在不少场合下,航天用工程材料处在极端条件下工作,这就对材料提出许多特殊的要求,虽然国内外有一定的研究积累,但对更精确的模型和符合特定材料的损伤的状态方程,有待深一步研究。如高级弹头再入时气动加热和粒子云侵蚀以及两者耦合效应引起弹头防护材料增大后退量的问题;空中垃圾和微流星的高速碰撞对航天器的威胁;特别是核爆和激光武器对材料的损伤和破坏,实质上是辐射引起的热击波层裂破坏,这些都属于超高速碰撞对材料的响应问题。天线罩材料、吸波材料、红外隐身材料、电磁屏蔽材料都是具有不同波长电磁波的电磁功能材料,它们对固体介质的穿透、吸收、反射等会产生响应,不同的电磁功能材料,其宏观性能的物理参量不同,但有几个参量是通用的,如介电常数、磁导率和损耗角正切,搞清这些参量与材料微观结构的关系,可以为材料设计和材料创新提供科学依据。

关键词: 天线罩材料     吸波材料     红外隐身材料     电磁兼容材料    

A novel approach to minimizing material loss for computer numerical control flank-regrinding of worn

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0757-z

摘要: Flanks of end mills are prone to wear in a long machining process. Regrinding is widely used in workshops to restore the flank to an original-like state. However, the traditional method involves material waste by trial and error and dramatically decreases the potential regrinding. Moreover, over-cut would happen to the flutes of worn cutters in the regrinding processes because of improper wheel path. This study presented a new approach to planning the wheel path for regrinding worn end mills to minimize material loss and recover the over-cut. In planning, a scaling method was developed to determine the maximum size of the new cutter according to the similarity of cutter shapes before and after regrinding. Then, the wheel path is first generated by envelope theory to regrind the worn area with a four-axis computer numerical control grinder according to the new size of cutters. Moreover, a second regrinding strategy is applied to recover the flute shape over-cut in the first grinding. Finally, the proposed method is verified by an experiment. Results showed that the proposed approach could save 25% of cutter material compared with the traditional method and ensure at least three regrinding times. This work effectively provides a general regrinding solution for the worn flank with maximum material-saving and regrinding period.

关键词: flank-regrinding     worn end mill     wheel position and orientation     material loss     over-cut    

A MATLAB code for the material-field series-expansion topology optimization method

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 607-622 doi: 10.1007/s11465-021-0637-3

摘要: This paper presents a MATLAB implementation of the material-field series-expansion (MFSE) topo-logy optimization method. The MFSE method uses a bounded material field with specified spatial correlation to represent the structural topology. With the series-expansion method for bounded fields, this material field is described with the characteristic base functions and the corresponding coefficients. Compared with the conventional density-based method, the MFSE method decouples the topological description and the finite element discretization, and greatly reduces the number of design variables after dimensionality reduction. Other features of this method include inherent control on structural topological complexity, crisp structural boundary description, mesh independence, and being free from the checkerboard pattern. With the focus on the implementation of the MFSE method, the present MATLAB code uses the maximum stiffness optimization problems solved with a gradient-based optimizer as examples. The MATLAB code consists of three parts, namely, the main program and two subroutines (one for aggregating the optimization constraints and the other about the method of moving asymptotes optimizer). The implementation of the code and its extensions to topology optimization problems with multiple load cases and passive elements are discussed in detail. The code is intended for researchers who are interested in this method and want to get started with it quickly. It can also be used as a basis for handling complex engineering optimization problems by combining the MFSE topology optimization method with non-gradient optimization algorithms without sensitivity information because only a few design variables are required to describe relatively complex structural topology and smooth structural boundaries using the MFSE method.

关键词: MATLAB implementation     topology optimization     material-field series-expansion method     bounded material field     dimensionality reduction    

Influence of soft rock-fill material as dam embankment with central bituminous concrete membrane

Peter TSCHERNUTTER

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 63-70 doi: 10.1007/s11709-010-0016-3

摘要: This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up- and downstream dam shell by means of an embankment dam of medium height. Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction. During the construction the properties of the available rock-fill changed from solid to soft materials. This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder. Several times higher dam settlements as well as significant differential settlements between the up- and downstream dam shell were observed during construction and operation. Apart from this situation, the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.

关键词: embankment dam     bituminous concrete membrane     rock-fill material properties     deformation behavior    

Effects of sheet thickness and material on the mechanical properties of flat clinched joint

Chao CHEN, Huiyang ZHANG, Shengdun ZHAO, Xiaoqiang REN

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 410-419 doi: 10.1007/s11465-020-0618-y

摘要: The flat clinching process is attracting a growing attention in the joining field of lightweight materials because it avoids the geometric protrusion that appears in the conventional clinching process. In this paper, the effects of sheet thickness and material on the mechanical properties of the clinched joint were studied. Al1060 and Al2024 sheets with 2 mm thickness were employed to develop the clinched joint by using different material configurations, and Al1060 sheets with 2.5- and 1.5-mm thicknesses were used to produce the clinched joint by using different thickness configurations. The clinched joints using various sheet configurations were sectioned, and dimensional analysis was conducted. Cross-tensile and shearing tests were carried out to analyze the mechanical properties of the clinched joint, including tensile strength, shearing strength, and absorbed energy. In addition, the failure modes of the clinched joints were discussed. Results indicated that the clinched joint with a stiff top sheet had increased static strength regardless of the test type. The clinched joint with a thick top sheet demonstrated lower static strength than the joint with a thick bottom sheet in the cross-tensile test. However, this result was reversed in the shearing tests. The flat clinching process has a great potential in joining dissimilar and various thickness materials.

关键词: clinched joint     flat clinching process     thickness configuration     material configuration     mechanical property    

数据中心设计——一种微结构材料体系设计新方法 Article

Wei Chen, Akshay Iyer, Ramin Bostanabad

《工程(英文)》 2022年 第10卷 第3期   页码 89-98 doi: 10.1016/j.eng.2021.05.022

摘要:

在高通量计算材料科学时代,材料基因组计划的核心是为计算材料设计建立数据处理、材料结构和材料属性(PSP)之间的关系。近年来,在数据获取和存储,微结构表征和重建(MCR),机器学习(ML),材料建模和仿真,数据处理、材料制造和实验方面取得的技术进步,显著提升了研究人员在PSP关系的建立和逆向材料设计方面的能力。本文将从设计研究的角度审视这些进步。特别介绍了一种数据中心设计方法,并从本质上将该方法分为三个方面:设计表征、设计评估和设计合成。每个方面的发展都由领域知识指导并从中受益。因此,针对每个方面,提出了一种应用广泛的计算方法,这些方法的集成实现了以数据为中心的材料发现和设计。

关键词: 材料信息学     机器学习     微结构     重建     贝叶斯优化     混合变量模型     降维     材料设计    

A critical review of preparation design and workability measurement of concrete material for largescale

Guowei MA, Li WANG

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 382-400 doi: 10.1007/s11709-017-0430-x

摘要:

In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components and buildings by means of 3D concrete printing. The major issues of this innovative technique focus on the preparation and optimization of concrete materials which possess favourable printable properties as well as the measurement and evaluation methods of their workability. This paper firstly introduces three largescale 3D printing systems that have been successfully applied in construction industry. It then summarizes the commonly used raw materials in concrete manufacturing. Critical factors that should be particularly controlled in material preparation are specified. Easy-extrusive, easy-flowing, well-buildable, proper setting time and low shrinkage are significant for concrete mixture to meet the critical requirements of a freeform construction process. Thereafter, measuring methods that can be employed to assess the fresh and hardened properties of concrete at early stages are suggested. Finally, a few of evaluation methods are presented which may offer certain assistance for optimizing material preparation. The objective of this work is to review current design methodologies and experimental measurement and evaluation methods for 3D printable concrete materials and promote its responsible use with largescale 3D printing technology.

关键词: 3D printing     concrete material     printable property     workability measurement     construction automation    

标题 作者 时间 类型 操作

A multiscale material model for heterogeneous liquid droplets in solid soft composites

期刊论文

基于高等分析的钢结构设计——材料建模与应变极限

Leroy Gardner, Xiang Yun, Andreas Fieber, Lorenzo Macorini

期刊论文

Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

Zheng-Dong MA

期刊论文

多尺度材料与过程设计的数据驱动和机理混合建模方法

周腾, Rafiqul Gani, Kai Sundmacher

期刊论文

Smart systems engineering contributing to an intelligent carbon-neutral future: opportunities, challenges, and prospects

期刊论文

Modeling process-structure-property relationships for additive manufacturing

Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU

期刊论文

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

期刊论文

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN

期刊论文

工程材料研究中科学问题的思考

于翘

期刊论文

A novel approach to minimizing material loss for computer numerical control flank-regrinding of worn

期刊论文

A MATLAB code for the material-field series-expansion topology optimization method

期刊论文

Influence of soft rock-fill material as dam embankment with central bituminous concrete membrane

Peter TSCHERNUTTER

期刊论文

Effects of sheet thickness and material on the mechanical properties of flat clinched joint

Chao CHEN, Huiyang ZHANG, Shengdun ZHAO, Xiaoqiang REN

期刊论文

数据中心设计——一种微结构材料体系设计新方法

Wei Chen, Akshay Iyer, Ramin Bostanabad

期刊论文

A critical review of preparation design and workability measurement of concrete material for largescale

Guowei MA, Li WANG

期刊论文